US 7,415,496 B2

25

H. Method of Troubleshooting/Debugging One Embodi-
ment of a System

One embodiment of the system 10 also has additional
functionality that may allow a worker 155 to be deployed on
a local computer 100 without accessing the compute back-
bone 300 infrastructure or the network 200. To allow an
applications developer 30 to debug its worker modules 195-1
to 195-N locally on its local computer 100 (which, in one
embodiment, is the development host for the applications
developer 30), the compute backbone 300 is capable of (i)
providing a simplified replica of itself, including an API 190,
and (ii) initializing worker modules 195-1 to 195-N in the
same process space in which the calling application 180
resides. Such a capability may enable an applications devel-
oper 30 to debug functionality, such as persistence and
parameter passing, in an environment where the developer 30
has access to all necessary information about both the calling
application 180 and the environment on which it is running
(i.e., the replicated functionality of the compute backbone
300). For example, if a worker module 195 performs properly
on the local computer 100, it will also perform properly when
deployed on the compute backbone 300.

FIG. 11 illustrates certain operations performed in one
embodiment of a method of running a calling application 180
in local mode. For any particular calling application 180, an
applications developer 30 may create both a worker module
195 and one or more jobs 182 (step 1910). At initialization,
the developer 30 links the calling application 180 to the API
190 file associated with local mode operation (as opposed to
the API 190 file associated with network mode operation)
(step 1920). The API 190 then loads the worker module 195
into the process space of the local computer 100 (step 1930).
The API 190 ensures that a replica of all major functions
performed by the compute backbone 300 (e.g., scheduling,
caching, etc.) are loaded into the data storage devices 110-1 to
110-N of'the local computer 100 (step 1940). The worker 155
is then processed on the CPU 120 of the local computer 100
(step 1950). Unlike the parallel computing operation of net-
work mode on the actual compute backbone 300 infrastruc-
ture, processing in local mode is accomplished sequentially,
or perhaps concurrently if multithreading is used.

Although illustrative embodiments and example methods
have been shown and described herein in detail, it should be
noted and will be appreciated by those skilled in the art that
there may be numerous variations and other embodiments
which may be equivalent to those explicitly shown and
described. For example, the scope of the present invention is
not necessarily limited in all cases to execution of the afore-
mentioned steps in the order discussed. Unless otherwise
specifically stated, the terms and expressions have been used
herein as terms and expressions of description, not of limita-
tion. Accordingly, the invention is not limited by the specific
illustrated and described embodiments and examples (or the
terms or expressions used to describe them) but only by the
scope of appended claims.

10

20

25

30

35

40

45

50

55

26

We claim:

1. A method, comprising:

receiving, for computation by a node computing device of

a distributed computing system, a parent job configured
to produce one or more descendant jobs, wherein said
node computing device is one of a plurality of node
computing devices of said distributed computing sys-
tem;

scheduling computation of said parent job on said node

computing device;

selectively rescheduling computation of a job other than

said parent job from any one of said plurality of node
computing devices to another of said node computing
devices; and

preventing rescheduling of said parent job unless each of

said descendant jobs is completed or terminated.

2. The method of claim 1, said distributed computing sys-
tem further comprising a persistent data storage queue in
communication with said node computing device, wherein a
minimum availability of said distributed computing system is
defined by an availability of said persistent data storage; and

wherein said method further comprises:

storing a descendant output from each of said descen-
dant jobs in said persistent queue for retrieval by said
node computing device processing said parent job;
and

accessing said persistent queue to retrieve said descen-
dant output for use in computation of said parent job.

3. The method of claim 1, wherein none of said node
computing devices is available for computation at a time
when said parent job is scheduled for computation.

4. The method of claim 1, further comprising sending for
computation each descendant job to a node computing device
other than said node computing device processing said parent
job.

5. The method of claim 1, wherein said parent job com-
prises meta-information comprising an instruction to divide
one or more of said descendant jobs from said parent job for
scheduling by a scheduler server and processing by at least
one of said node computing devices.

6. The method of claim 1, further comprising terminating
each of said descendant jobs upon termination of said parent
job.

7. The method of claim 1, wherein each of said node
computing devices provides to a scheduler server an avail-
ability status.

8. The method of claim 1, further comprising receiving said
parent job from an application running on a local computing
device.

9. The method of claim 8, further comprising providing an
output of said parent job for retrieval by said application.

10. The method of claim 1, further comprising storing a
descendant output from at least one of said descendant jobs in
a cache for use by another of said descendant jobs or said
parent job.

11. The method of claim 1, wherein said descendant job
comprises meta-information comprising an identification of a
compute function to be used to perform a computation for
said descendant job.



